/
Bloch Sphere and Rotations
Search
Notion
Bloch Sphere and Rotations
Single Qubit Operations
eiAx=cos(x)+isin(x)Ae^{iAx} = cos(x) + isin(x)A
Thus, Rx(θ)=eiθX/2R_x(\theta) = e^{i\theta X/2}, Ry(θ)=eiθY/2R_y(\theta) = e^{i\theta Y/2} and Rz(θ)=eiθZ/2R_z(\theta) = e^{i\theta Z/2}.
Rn^(θ)=eiθn^σ/2R_{\hat{n}}(\theta) = e^{i\theta \hat n\cdot\vec\sigma/2}
In general, we have the above equation where σ=Xi^+Yj^+Zk^\vec\sigma = X\hat i + Y\hat j + Z\hat k.
Some Algebra
X2=Y2=Z2=iXYZ=IX^2 = Y^2 = Z^2 = -iXYZ = I
Rn^(α)=Rz(ϕ)Ry(θ)Rz(α)Ry(θ)Rz(ϕ)=Rz(ϕ)Ry(θ)Rz(α)Ry(θ)Rz(ϕ)R_{\hat n}(\alpha) = R_z(\phi)R_y(\theta)R_z(\alpha)R_y(-\theta)R_z(-\phi)\\ = R_z(\phi)R_y(\theta)R_z(\alpha)R_y(\theta)^\dagger R_z(\phi)^\dagger
Theorems
1.
Any arbitrary single qubit unitary operator can be written in the form U=eiαRn^(θ)U = e^{i\alpha}R_{\hat n}(\theta).
2.
Suppose UU is a unitary operation over a single qubit then  α,β,γ,δ\exists\ \alpha, \beta, \gamma, \delta such that U=eiαRn^(β)Rm^(γ)Rn^(δ)U = e^{i\alpha}R_{\hat n}(\beta)R_{\hat m}(\gamma)R_{\hat n}(\delta).
3.
There exists unitaries A,B,CA, B, C for any given unitary UU such that ABC=IABC = I and U=eiαAXBXCU = e^{i\alpha} AXBXC.