Deterministic Finite Automata: A $5$-tuple $\{Q, \Sigma, \delta,q_0, F\}$ where $\delta: Q \times \Sigma \to Q$.
Language: $L \subseteq \{0, 1\}^*$
Recognizing Language: If a machine $M$ accepts all strings $\in L$ and rejects every other string $\not\in L$, then we say that $M$ recognizes $L$. Conversely, $L(M) = $ language recognized by $M$.
Regular Expressions: Uses $()\text{ braces},\ |\text{ union},\ *\text,\ \cdot\text{ concatenation}$.
Non-deterministic Finite Automata: A $5$-tuple $\{Q, \Sigma, \delta,q_0, F\}$ where $\delta: Q \times \{\Sigma \cup \epsilon\} \to 2^Q$.
Generalized NFA: A $5$-tuple $\{Q, \Sigma, \delta,q_{start}, q_{accept}\}$ where we have the following.
If $A$ is a regular language then there is a number $p$ where if $s$ is any string in $A$ of length at least $p$ $(|s| \geq p)$, then $s$ may be divided into three pieces, $s = xyz$, satisfying the following conditions: